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Tolerance Analyses of Arbitrary
Physical Systems

Tolerance analyses are indispensable to prove the techni-
cal practicability of sub-assemblies under mass producti-
on conditions. This contribution is intended as an attempt
to show an empirical resolution method which allows the
easy implementation of complex tolerance analyses on ar-
bitrary physical systems.

1  Introduction

Tolerance investigations, frequently also
termed tolerance analyses, have been indis-
pensable ever since the beginning of the last
century, starting with Henry Ford’s pioneer-
ing work. Their purpose is to prove the tech-
nical practicability of sub-assemblies under
mass production conditions. However, in re-
cent years the subject of tolerance analyses
on technical sub-assemblies has gained
more and more significance, not least due to
the fact that tolerance analyses can deter-
mine tolerance margins and, by implica-
tion, manufacturing costs. 

The calculation of manufacturing toler-
ances has become a central theme for the
motor vehicle industry and its sub-contrac-
tors alike, as the competitiveness of a compa-
ny is decided by quality requirements as
well as time requirements

For a tolerance analysis to be carried out,
the functional interdependencies of a sub-
assembly or technical system must be

known. That is to say that it must also be
known which links form the closed chain
and, above all, what influence each individ-
ual link of the chain has on the function of
the sub-assembly.

Besides describing the general methods
used in tolerance analysis, this contribution
is intended to demonstrate an empirical reso-
lution method for determining linearity co-
efficients. This method consists of simple ex-
periments to show functional interdepen-
dencies quickly and easily and thus facilitate
the implementation of tolerance analyses.
This paper will, therefore, include statistical
analysis as well as arithmetical analysis.

2  Description of Closed Dimension
Chains

Figure 1 shows part of the forward section of
a metal housing used for adjusting an auto-
mobile air conditioning system. The illustra-
tion depicts the bearing of the drive- and
transmission cog for the ventilation flap. In
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general, transmission of force in a gear sys-
tem (in this case an involute gear) can only
be guaranteed if the meshing of the two
wheels is harmonised in such a way that the
sum of the two pitch circle radii is equal to
the dimension required M0 between the cen-
tre of the shafts.

Therefore the dimension M0, also called
closure dimension, necessary to ensure
functionality is fixed at 47.4 ± 0.3 mm. If the
closure dimension is too small, the teeth
heads can protrude into the teeth bases of
the opposite cog. If the closure dimension is
too large, the cogs may not run smoothly or
even fail to interlock entirely. 

The tolerances for form and position nor-
mally required for a correct function de-
scription are not taken into account in the
calculation example. This should be taken
into account, based on the appropriate toler-
ance principle and tolerance type.

The individual dimensions which affect
the distance between shafts M0 in this case
are the horizontal and vertical positions of
the bearing centres in the metal housing
structure relative to their reference faces.

Since the technical implementation of the
example shown here should be realised with
a double perforation operation, it is neces-
sary to consider the respective X- and Y-coor-
dinates separately. These are a result of the
tool precision on the one hand, and of the ex-
act insertion of the metal into the tool on the
other. The holes for the drive wheel bearing
are punched during the first stage and those
fort he transmission wheel during the sec-
ond. Consequently the effective tolerated in-
dividual dimensions of the distance between
shafts M0 are the horizontal lengths M1 and
M2 and the vertical lengths M3 und M4.

So the nominal dimension of the distance
between the two shafts under the nominal
dimensions given in Figure 1 is calculated ac-
cording to Pythagoras’ theorem following
Eq. (1) to N0 = 47.413 mm. Eq. (1) describes (al-
lowing for the respective tolerated individual
dimension Mi ) the objective function of the
sought dimension M0, as Eq. (2) shows. Gen-
erally speaking a closed dimension chain is a
function of the respective tolerated individ-
ual dimensions, M0 = f(M1, M2,..., Mk).

Eq. (1)

Eq. (2)

If the closed dimension chain is a flat or
spatially closed vector, it is usually referred
to as multidimensional or non-linear dimen-
sion chain. In this case the non-linear influ-
ences of the respective tolerated individual

Eq. (8)

Eq. (9)

Eq. (10)

Eq. (11)

Following clarification of the functional
interdependencies, the tolerance analysis
proper may be conducted. For this, initially
the maximum arithmetical closure dimen-
sion PO = 47.953 mm and the minimum clo-
sure dimension PU = 46.873 mm are calcu-
lated by using equations (12) and (13). The
difference is the arithmetical closure dimen-
sion tolerance Ta = 1.08 mm. The arithmeti-
cal closure dimension tolerance can also be
calculated by using Eq. (14).

Eq. (12)

Eq. (13)

Eq. (14)

The arithmetical result shows that the
contact point of the two wheels is not con-
stantly in the transition area of the two
pitch circle radii, but may be distributed in
a tolerance range of 1.08 mm. If applied to
the functional dimension specification M0 =
47.4 ± 0.3 mm, the arithmetical result with
PO = 47.953 mm and PU = 46.873 mm is not
correct. If dependable interlocking function-

dimensions Mi on the closure dimension M0

are recorded via so-called linearity coeffi-
cients αi. If the linearity coefficients of a di-
mension chain are exclusively ± 1, it is
known as a one-dimensional or linear di-
mension chain [1]. So a dimension chain in
general can be described by Eq. (3).

Eq. (3)

The general resolution method to deter-
mine linear coefficients is given in the lin-
earisation of functions using the “total dif-
ferential“[6]. In this case the function y =
f(x1, x2,..., xk) in the immediate vicinity of
the centre of area P(x0, y0, z0)is replaced by a
linear function, that is to say, the total differ-
ential of the function, see Eq. (4).

Eq. (4)

Eq. (5)

The first order partial deductions are
formed for the centre of area P. Also the ∆xi

are the “minor“ deviations with reference to
the centre of area. As a result, Eq. (5) follows
Eq. (4) for the linearisation of the objective
dimension M0 = f(M1, M2,..., Mk). Subsequent-
ly the change of M0 results from the prod-
uct of the respective linearity coefficient
and the individual tolerance. Therefore the
linearity coefficients can be calculated us-
ing Eq. (6). The respective nominal dimen-
sions are considered in the derivations. Us-
ing Eq. (6), the following deductions result
for the adjustment mechanism example ac-
cording to equations (7) to (10), and there-
fore linearity coefficients α1 = -0.46400699,
α2 = 0.46400699, α3 = -0.88583153 and α4 =
0.88583153. When the linearity coefficients
are known, the nominal closure dimension
N0 may be calculated according to Eq. (11).
This is also calculated using Pythagoras’ the-
orem to N0 = 47.413 mm.

Eq. (6)

Eq. (7)
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ality is to be achieved the individual toler-
ances must be narrowed down further.

3  Statistical Tolerance Analysis of the
Adjustment Mechanism

Given that – as early as the construction de-
sign phase – the eventual construction of
the individual components and that the
function of the sub-assemblies must be as-
sured in and by the mass-produced compo-
nents, a merely mathematical verification
of the construction will not suffice. It is far
more important to provide theoretical proof
that the construction will fulfil the func-
tional required of it. This can only be
achieved by means of a statistical tolerance
analysis.

In order to determine the statistical clo-
sure dimension tolerance Ts for the distance
between shafts, production-specific effect
parameters in the shape of production dis-
tribution (and thereby process parameters)
are allocated to the four individual toler-
ances prior to calculation. It is assumed for
the adjustment mechanism example that
the probability density functions of the ac-
tual dimensions, generally known as pro-
duction distributions, of the four closed di-
mension chains are distributed normally
with an acceptance probability of Pa =
99.73 %, with the parameters as per Table 1.

Asymmetrical distribution patterns exist
alongside the symmetrical distribution
types shown in Table 1. Examples of asym-
metrical patterns are logarithmic standard
distributions for deviation from smooth
running pertaining to surfaces with rota-
tion symmetry, or Rayleigh spread in the
case of eccentricity, concentricity or posi-
tional tolerances. Furthermore, hybrid
spreads of the first or second kind can also
develop [5].

Using Gauß’ error reproduction with
Eq. (15), standard deviation or spread margin
of the distance between shafts M0 may be cal-
culated [4], [2]. This results, given the above-
mentioned peripheral conditions, in σ0 =
0.0942 mm. In equations (11) to (15) and in Eq.
(17), it is important to ensure that the lineari-
ty coefficients are included, partly as a rela-
tive value and partly as an absolute value.

Eq. (15)

Eq. (16)

Eq. (17)

The method used here is based on the
“central borderline axiom“ of statistics. In
this case, the sum of any given independent
spreads numbering ≥ 4 is close enough to be
considered a standard spread. According to
the standardised spread definition, which
has already been calculated for µ = 0 and for
σ = 1 [3], the quantile is u = ± 3.0 with an ac-
ceptance probability Pa = 99.73002 %, corre-
sponding to a process capability cp = 1.0. If u
= ± 4.0 with an acceptance probability Pa =
99.9936 %, then this corresponds to the
process capability cp = 1.33. By using equa-
tions (15) and (16), the statistical closure di-
mension tolerance for process capability cp

= 1.0 with Ts = 0.565 mm may be calculated.
The resulting density function for the

closure dimension tolerance is shown in Fig-
ure 2. It can be seen that that the statistical
spread around the nominal closure dimen-
sion N0 = 47.413 mm, calculated according
to Eq. (17), is symmetrical at ± Ts/2.

The result of the statistical tolerance
analysis shows that the function of the dis-
tance between shafts guarantees unprob-
lematic interlocking despite the results of
the mathematical calculation, as the toler-
ance area of 0.565 mm remains within the
nominal value of ± 0.3 mm.

The example shown reflects many actual
constructions which, following verification

by a mathematical tolerance analysis,
should not function properly but are put in-
to practice nevertheless. The result is that se-
rial production has complete or qualified
process capability, as the laws of statistics
apply here.

4  Empirical Determination of Linearity
Coefficients

The example of the adjustment mechanism
shows the resolution model of linearisation
using the “total differential“ to determine
the linearity coefficients. The use of lineari-
sation as set out in Eq. (5), however, assumes
that the objective function for M0 is known.
The following empirical resolution model
should be used whenever the functional in-
terdependencies are not completely clear or
cannot be completely described. The aim
here is to use experimental constructions to
discover the required information. The ex-
ample of a torque key, as shown in Figure 3,
has been chosen to describe the method
here. In the case of the current example, the
torque key must be dimensioned in such a
way that the angle of twist is ϕ = 40° when
the torsion moment is Mt = 100,000 Nmm.

The object is to calculate the resulting an-
gle of twist ϕ of the torsion bar under the
given manufacturing tolerance, firstly in or-
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Trapezium
Side ratio 1/2 to 1 100 0.73029 ± 2.190
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Side ratio 1/3 to 1 100 0.77459 ± 2.323

t2

Triangle 100 0.81649 ± 2.44924
t2

Normal 99.73002 1.00000 ± 3.036
t2

Normal 99.9936 1.33333 ± 4.064

10 t2

192

5 t2

108

Table 1: Production spread types and parameters [5]

Experiment Parameter Angle Gradient Coefficient
series d [mm] l [mm] Mt [Nmm] ϕ [°]

1.1 12 800 100,000 28
positive α l = 0.035

1.2 12 900 100,000 31.5

2.1 12 1,143 100,000 40
negative αd = -11

2.2 13 1,143 100,000 29

2.1 12 1,143 100,000 40
positive αMt = 0.0005

3.2 12 1,143 101,000 40.5

2.1 12 1,143 100,000 40
negative αd = -15

4.2 12.1 1,143 100,000 38.5

Table 2: Evaluation of the torque key experiment series
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der to calibrate the scale and secondly to
check the accuracy of the torque key by read-
ing from the scale the value for the force
used.

The angle of twist will behave in a linear
elastic range in proportion to the force used.
The linearity coefficients are also required
here in order to be able to calculate the an-
gle of twist. As we already know, they as-
sume a known mathematical objective func-
tion for the angle of twist.

Let it initially be assumed that this func-
tional dependency is unknown. It follows
that a statement from the point of view of
the constructor must be made as to the val-
ues which have an effect. From the point of
view of the constructor, the torsion moment
Mt, the torsion bar diameter d and the tor-
sion bar length l are values which are sure
to have an effect.

If these are really the links of the closed
dimension chain, the aim is to determine
the required linearity coefficients for them.
It is quite possible that values with an effect
are, by their being unknown, neglected
here, which should of course be avoided if
possible. If values with an effect are, howev-
er, inadvertently neglected, this will not pro-
vide a false result for the dimensions in
question.

Next, simple experiment apparatus is
constructed in order to determine the lin-
earity coefficients. The torsion bar is made
from heat-treated steel 42CrMo4. Solid cylin-
drical material with a diameter d = 12 mm is
selected. The torsion stress is calculated us-
ing equations (18) and (19) to τt = 294.73
N/mm2, which is therefore less than the per-
mitted stress of τt = 350 N/mm2.

Eq. (18)

Eq. (19)

First the length of the torsion key bar is
determined using the simple experiment
apparatus. For this purpose, as shown in Fig-
ure 4, bars measuring 800, 900, 1,000, 1,100
und 1,200 mm made from the selected ma-
terial in the corresponding diameter were
manufactured. Then the various bars were
subjected to a constant torsion moment of
Mt = 100,000 Nmm in the apparatus and the
resulting angles of twist measured. The as-
sessment of the experiment in Figure 4
shows that the desired angle of twist ϕ = 40°
is achieved between the bar lengths 1,100
and 1,200 mm. The assessment also shows
that the angle of twist changes in propor-

tion to the bar length, so that the bar length
for ϕ = 40° with 

l = 1,142.85 mm may be calculated by a
simple rule of three according to Eq. (20). So
now all nominal values for the torque key
have been determined: bar diameter d = 12
mm, bar length l = 1,143 mm and torsion
moment Mt = 100,000 Nmm.

Eq. (20)

The next experimental apparatus are to
be constructed on the basis of the knowl-
edge gained here with the purpose of deter-
mining the linearity coefficients of the
three links of the closed dimension chain.
As this resolution model describes an empir-
ical linearisation, one link in the chain will
be altered slightly in the course of the exper-
iment, and the direct influence of this alter-
ation on the function dimension deter-
mined or measured. This happens under the
assumption that the nominal values of the
other closed chain dimensions remain con-
stant. The change in length of the closed di-
mension chain links should be as small as
possible, as otherwise an error increase in
the determination of the linearity coeffi-
cients occurs.

First the coefficient for the bar length is
to be determined. The evaluated results from
the first experimental apparatus are used for
this, see Figure 4. The coefficient may be cal-
culated using Eq. (21) at αl = 0.035 °/mm,
from the quotient of the change in angle di-
vided by the bar length. At the same time,
the function increase in Figure 4 shows
whether it is a positive or a negative dimen-
sion chain link. In this case it is positive.

Eq. (21)

A further experiment is conducted to de-
termine the bar diameter coefficient by
measuring the angle of twist subject to the
nominal dimension structure. Following ex-
periment series 2.1 this is ϕ = 40°. Experi-
ment series 2.1 is used as a reference for the
subsequent series, see Table 2.

Afterwards the torsion bar is replaced by
one with a diameter d = 13 mm and the
nominal torsion moment applied again.
Now the angle of twist is only 29°, see Figure
5. The diameter coefficient is calculated ac-
cordingly using Eq. (22) at αd = -11 °/mm. In
this case, it is a negative dimension chain
link.

Eq. (22)

Finally the coefficient for the torsion
moment is determined. On the basis of the

result of experiment series 2.1, the torsion
moment is increased from 100,000 to
101,000 Nmm with the result that an an-
gle of twist of ϕ = 40.5° is achieved, see Fig-
ure 6. Following Eq. (23), the resulting coef-
ficient for the torsion moment is αMt =
0.0005 °/Nmm. This chain link is positive
again.

Eq. (23)

The results of the experiment series show
that the bar diameter has a significant effect
on the resulting angle of twist. As the empir-
ical determination of the coefficients in-
volves a linearisation, as we have already ex-
plained, the difference should be as small as
possible, especially in the case of significant
links. Therefore a further experiment with a
bar diameter d = 12.1 mm is conducted, see
Figure 7. The result of Eq. (24) with αd = 
-15 °/mm justifies the new experiment, as
the coefficient has again changed signifi-
cantly.

Eq. (24)

Now that the function dependency has
been clarified by way of the linearity coeffi-
cients, the tolerance analysis proper may be
carried out. Thus he arithmetic closure di-
mension tolerance for the angle of twist is
calculated with the tolerances for the three
dimension chain links given in Figure 3, fol-
lowing Eq. (14), with Ta = 7.084°.

For statistical tolerance analysis purpos-
es, the manufacturing qualities as in Table 1
are allocated as follows: the actual measure-
ment spread over the area of tolerance of the
torsion moment should correspond to a rec-
tangular spread pattern, the actual meas-
urement spread for the bar length to a trape-
zium with a side ratio of 0.5/1 t and the actu-
al measurement tolerance spread for the bar
diameter should correspond to a normal
spread pattern with an acceptance probabil-
ity of Pa = 99.73 %.

Using equations (15) and (16), the statisti-
cal closure dimension tolerance for Pa =
99.73 % with Ts = 6.246° may be calculated.
According to this, the deviation at an angle
of twist of ϕ = 40° will only come to 88.1 % of
the arithmetical result. If the diameter toler-
ance were only ± 0.05 instead of ± 0.2 mm,
then the statistically determined deviation
from the nominal angle would only be ±
1.145° instead of ± 3.12°. Use of this method
for empirical linearisation shows how easy
and relatively quick processing can be, espe-
cially where physical systems are complex
and/or arbitrary.
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5  Calculation of the Torque Key Using
Linearisation

In order to prove the the coefficients ob-
tained empirically, linearisation should also
be conducted using “total differential“. For
the empirical determination of the coeffi-
cients it was assumed that the objective
function fort he angle of twist was un-
known. In fact the angle of twist can be cal-
culated using Eq. (25), however [7]. The polar
moment of inertia Ip according to Eq. (26)
must be considered here. Provided that the
torsion bar cross-section consists of a com-
pletely solid, cylindrical material, the angle
of twist M0 = f(Mt, d, l, G) depends on the ap-
plied torsion moment Mt, the torsion bar di-
ameter d, the torsion bar length l and the
slip module G of the torsion bar.

Eq. (25)

Eq. (26)

If the objective function for M0 is known,
the solution method of linearisation follow-
ing Eq. (5) can be used to determine lineari-
ty coefficients. The 1st order partial deriva-
tions then give the following linearity coef-
ficients for the torsion moment following
Eq. (27) αMt = 4.00007589 10-4, the bar length
following Eq. (28) αl = 0.035180966, the bar
diameter following Eq. (29) αd = 
-13.33358631, and the slip module accord-
ing to Eq. (30) αG = -5.00009486 10-4.

Eq. (27)

Eq. (28)

Eq. (29)

Eq. (30)

The linearity coefficients obtained by
empirical methods correspond surprising-
ly well with those calculated here using lin-
earisation, see Table 2. As Eq. (27) shows,
the slip module was unknowingly not tak-
en into consideration in the empirical reso-
lution model. The other coefficients ob-
tained are nevertheless correct, despite this
omission. 

This is an excellent demonstration that
all or at least a significant number of con-
struction design parameters can be discov-
ered by experimental means, without
knowledge of the functional interdependen-
cies. This is of decisive relevance in the case
of arbitrary physical closed dimension
chains, as shown by the torque key example.

6  Summary

The process for empirical determination of
the linearity coefficients showed that, with
the simplest of apparatus and without prior
knowledge of the objective function, it may
be used for sub-assembly function. Even
when important or less important parame-
ters are overlooked in the course of verifica-
tion the recorded coefficients are still cor-
rect. The arithmetical tolerance analysis
may be conducted subsequently, in the
knowledge of the coefficients determined in
this way. Using these results as a basis, the
statistical tolerance analysis may be con-
ducted with the help of the central limit
theorem or error propagation according to
Gauß. The aim here is to find reliable and
validated functional dimensions as early as
possible during the design phase.

Many companies from the field of ma-
chine and vehicle manufacturing or of elec-
tronics have already identified the increas-
ing usefulness of tolerance analysis as an im-
portant factor in remaining at the top of the
competitiveness pyramid. Here, using the
laws of statistics, essential manufacturing
qualities are rendered less tolerance-sensi-

tive and, at the same time, more process-ori-
ented tolerances for a functional dimension
are defined.

The definition of process-oriented toler-
ances also entails process-oriented thoughts
and actions. The positive results of this are
that problems are brought to light and there-
fore decisions about how to solve them made
earlier, which saves both time and money.
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αi linearity coefficient
ϕ angle of twist
τt torsion stress
σ2 variance
σ0 standard deviation of the 

functional dimension
d torsion bar diameter
GO maximum dimension
GU minimum dimension
G slip module
Ip polar moment of inertia
l torsion bar length
Mi tolerated dimension
M0 closure- or functional 

dimension
Mt torsion moment
k, n, m number of dimension 

chain links

N0 nominal value of closure 
dimension

Pa acceptance probability
PO maximum closure dimension 

(highest possible value 
for good fit)

PU minimum closure dimension 
(lowest possible value 
for good fit)

tai arithmetical closed dimension 
chain link tolerance

Ta arithmetical closure dimension 
tolerance

Ts statistical closure dimension 
tolerance

u acceptance probability in s-units
of standardised normal spread

Wp polar resistance moment


